

Bear Lake Water System

PWS ID: FL3590069

Este informe contiene información muy importante sobre su aqua beber. Tradúzcalo ó hable con alquien que lo entienda bien, 866-842-8432 ext #8936

Message from Sean Twomey, President

Dear Sunshine Water Services Customers,

I am pleased to present your Annual Water Quality Report for 2023. Transparency, health, and safety are key priorities in our company's efforts to provide a highquality, reliable water supply. Included in this report are details about where your water comes from, what it contains, and how it compares to regulatory standards.

We are proud to share this report which is based on water quality testing through December 2023. We continually strive to supply water that meets and/or exceeds all federal and state water quality regulations at your tap.

Treating and maintaining a safe and reliable water supply is not only hard work, but it is rewarding. Our team of local water experts are proudly dedicated to providing safe, reliable, and cost-effective service every day. This commitment includes acting with integrity, protecting the environment, and enhancing the local communi-

Best regards,

Sear Tromay

Visit us online at www.SunshineWater.com Or Join us on Facebook or Twitter by

searching @MySunshineWater.

Source of Drinking Water

Our water source is groundwater pumped from a well drilled 400 feet deep into the Floridan Aquifer. The water is aerated and chlorinated for disinfection purposes. We have an interconnect with Seminole County's Southwest Water System (PWS ID 3590785) which is used for emergency purposes during times when we are making repairs to our system. Seminole County's water source is well water drawn from the Floridan Aquifer, aerated, chlorinated for disinfection and then fluoridated for dental health purposes.

Source Water Assessment

The Florida Department of Environmental Protection (FDEP) performed a Source Water Assessment on our system in 2023. The assessment was conducted to provide information about any potential sources of contamination in the vicinity of our wells. There are no potential sources of contamination identified for this system. The assessment results are available on the FDEP Source Water Assessment and Protection Program website at https://prodapps.dep.state.fl.us/swapp.

Help Protect our Resources

Help put a stop to the more than 1 trillion gallons of water lost annually nationwide due to household leaks. These easy to fix leaks waste the average family the amount of water used to fill a backyard swimming pool each year. Plumbing leaks can run up your family's water bill an extra 10 percent or more, but chasing down these water and money wasting culprits is as easy as 1-2-3. Simply check, twist, and replace your way to fewer leaks and more water savings:

- ⇒ Check for silent leaks in the toilet with a few drops of food coloring in the tank, and check your sprinkler system for winter damage.
- ⇒ **Twist** faucet valves; tighten pipe connections; and secure your hose to the spigot. For additional savings, twist a WaterSense labeled aerator onto each bathroom faucet to save water without noticing a difference in flow. They can save a household more than 500 gallons each yearequivalent to the amount water used to shower 180 times!
- ⇒ Replace old plumbing fixtures and irrigation controllers that are wasting water with WaterSense labeled models that are independently certified to use 20 percent less water and perform well.

For more information visit www.epa.gov/watersense.

To access your utility account anytime, anywhere, please register for our customer portal & download My Utility Account at https://account.myutility.us

EPA Wants You To Know

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- A. Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- B. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- C. Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- D. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- E. Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

What measures are in place to ensure water is safe to

In order to ensure that tap water is safe to drink, the EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be • Put strainers in sink drains to catch food scraps / solids expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Special notice from EPA for the elderly, infants, cancer patients and people with HIV/AIDS or other immune system problems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer sources for community drinking water supplies. Many chemotherapy, persons who undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and the EPA website at: infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Information Concerning Lead in Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials

and components associated with service lines and home plumbing. Sunshine Water Services is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/

Water that remains stationary within your home plumbing for extended periods of time can leach lead out of pipes joined with lead-containing solder as well as brass fixtures or galvanized pipes. Flushing fixtures has been found to be an effective means of reducing lead levels. The flushing process could take from 30 seconds to 2 minutes or longer until it becomes cold or reaches a steady temperature. Faucets, fittings, and valves, including those advertised as "lead-free," may contribute lead to drinking water. Consumers should be aware of this when choosing fixtures and take appropriate precautions. Visit the NSF Web site at www.nsf.org to learn more about lead-containing plumbing fixtures.

Drain Disposal Information

Sewer overflows and backups can cause health hazards, damage home interiors, and threaten the environment. A common cause is sewer pipes blocked by grease, which gets into the sewer from household drains. Grease sticks to the insides of pipes. Over time, the grease can build up and block the entire pipe. Help solve the grease problem by keeping this material out of the sewer system in the first place:

- Never pour grease down sink drains or into toilets. Scrape grease into a can or trash.
- for disposal.

Prescription Medication and Hazardous Waste

Household products such as paints, cleaners, oils, and pesticides, are considered to be household hazardous waste. Prescription and over-the-counter drugs poured down the sink or flushed down the toilet can pass through the wastewater treatment system and enter rivers and lakes (or leach into the ground and seep into groundwater in a septic system). Follow the directions for proper disposal procedures. Do not flush hazardous waste or prescription and over-the-counter drugs down the toilet or drain. They may flow downstream to serve as have communities offer a variety of options for conveniently and safely managing these items. For more information, visit

www.epa.gov/hw/household-hazardous-waste-hhw.

The Safe Drinking Water Act was passed in 1974 due to congressional concerns about organic contaminants in drinking water and the inefficient manner by which states supervised and monitored drinking water supplies. Congress' aim was to assure that all citizens served by public water systems would be provided high quality water. As a result, the EPA set enforceable standards for health-related drinking water contaminants. The Act also established programs to protect underground sources of drinking water from contamination.

Understanding This Report In order to help you understand this report, we want you to understand a few terms and abbreviations that are contained in it.						
Action level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.					
EPA	Environmental Protection Agency.					
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.					
Maximum Contaminant Level Goal (MCLG)	The "goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG's allow for a margin of safety.					
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
Not applicable (N/A)	Not applicable.					
Not Detected (ND)	Indicates the substance was not found by laboratory analysis.					
Parts per million (ppm) or milligrams per liter (mg/l)	One part per million corresponds to one minute in two years or a single penny in \$10,000.					
Parts per billion (ppb) or micrograms	One part per billion corresponds to one minute in 2,000 years or a single penny in					

Did You Know?

per liter (ug/l)

♦ The average family of four uses 255 gallons of water a day, 1,785 gallons a week, and 7,650 gallons per month.

\$10.000.000.

- ♦ A single toilet flush uses approximately 5-7 gallons of
- ◆ Taking a shower will use approximately 5-10 gallons per If You Have Questions Or Want To Get Involved minute. A 15-minute shower will use 75-150 gallons.
- ♦ Your kitchen or bathroom sink uses approximately 4-5 gallons a minute.
- ◆ One dishwasher load uses approximately 4-5 gallons a minute.
- ♦ Washing clothes uses approximately 35 gallons per load.

We ask that all our customers help us protect our water sources which are the heart of our community, our way of life and our children's future.

Monitoring Your Water

We routinely monitor for contaminants in your drinking water according to Federal and State laws. The tables below lists all the drinking water contaminants that were detected in the last round of sampling for each particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk.

Unless otherwise noted, the data presented in the table is from testing done January 1 through December 31, 2023. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, maybe more than one year old.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-amillion chance of having the described health effect.

Sunshine Water Services does not currently hold regular public meetings. Should the Utility hold a public meeting, you will be notified through the mail or public notice. We want our valued customers to be informed about their water utility. If you have any questions about this report or concerning your water utility, please contact Chris Lewerenz at (866) 842-8432.

Special Note to Property and Facility Managers

If you are responsible for apartments or other multiple residential or commercial units we encourage you to distribute this report to all your tenants either by posting in a common area or by furnishing a copy to each tenant or resident. The reports are available on our website at www.SunshineWater.com. If you require additional copies, please call customer service at (866) 842-8432 and we will provide them.

Violations

In 2023, Sunshine Water Services performed all required monitoring for contaminants and did not exceed any allowable levels of these contaminants. In addition, we received no violations and was in compliance with applicable testing and reporting requirements.

Water Quality Test Results											
Contaminant and Unit of Measurement	Dates of sampling (mo/yr)	Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination				
Inorganic Contaminants											
Barium (ppm)	4/21	N	0.0085	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits				
Chromium (ppb)	4/21	N	1.3	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits				
Nitrate (as Nitrogen) (ppm)	1/23	N	0.074	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits				
Sodium (ppm)	4/21	N	17.7	N/A	N/A	160	Salt water intrusion, leaching from soil				
Stage 2 Disinfectants and Disinfection By-Products											
Chlorine (ppm)	1/23 - 12/23	N	2.7	1.4 - 3.5	MRDLG = 4	MRDL = 4.0	Water additive used to control microbes				
Haloacetic Acids (HAA5) (ppb)	8/23	N	32.37	23.81 - 32.37	N/A	60	By-product of drinking water disinfection				
Total trihalomethanes (TTHM) (ppb)	8/23	N	48.17	43.7 - 48.17	N/A	80	By-product of drinking water disinfection				
Lead and Copper											
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	AL Exceeded Y/N	90th Percentile Result	No. of sampling sites exceeding the AL	MCLG	AL	Likely Source of Contamination				
Copper (tap water) (ppm)	7/21 - 9/21	N	0.205	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				
Lead (tap water) (ppb)	7/21 - 9/21	N	1.5	0	0	15	Corrosion of household plumbing systems; erosion of natural deposits				

PFAS Testing

Sunshine Water Services continues efforts to conduct statewide drinking water testing for Per- and Polyfluoroalkyl Substances (PFAS). These man-made compounds are used in the manufacturing of products resistant to water, grease or stains including firefighting foams, cleaners, cosmetics, paints, adhesives and insecticides. PFAS can migrate into the soil, water, and air and is likely present in the blood of humans and animals all over the world. During 2023, the Environmental Protection Agency (EPA) had Health Advisory Levels (HALs) for GenX, PFBS, PFOA, and PFOS. On April 10, 2024, the EPA approved new drinking water standards for six PFAS including PFOA, PFOS, PFNA, PFHxS, PFBS, and GenX Chemicals. We are reviewing the components of the new rule and will take appropriate actions to meet new regulations.

Our focus will remain, as always, on supplying our customers with quality, reliable water service.

For the latest PFAS results, visit our website at www.sunshinewater.com and click Water Quality Reports under Water Safety. For more information visit https://www.epa.gov/pfas.

PFAS Results (All results reported as Nanograms per liter (ng/L)								
Contaminant	Sample Date	Range of Detect	Average	EPA HAL				
PFBA	12/19/2023	N/A	2.1					
PFBS	12/19/2023	3.3-3.4	3.35	2000				
PFHpA	12/19/2023	1.4-1.6	1.5					
PFHxA	12/19/2023	2.7-3.3	3					
PFHxS	12/19/2023	2.9-3.3	3.1					
PFOA	12/19/2023	2.6-3.9	3.25	0.004				
PFOS	12/19/2023	2.8-3	2.9	0.02				
PFPeA	12/19/2023	N/A	4.3					
PFPeS	12/19/2023	N/A	0.43					

Terms and Abbreviations:

- **GenX** Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)
- Health Advisory Level (HAL) To provide Americans, including the most sensitive populations, with a margin of
 protection from a lifetime of exposure to GenX, PFBS, PFOA and PFOS from drinking water, EPA established health
 advisory levels.
- Ng/L Nanograms per liter (ng/L) which equals Parts per trillion (ppt) One part per trillion corresponds to one
 minute in 2,000,000 years, or a single penny in \$10,000,000,000.
- PFBA Perfluorobutanoic Acid
- PFBS Perfluorobutanesulfonic Acid
- PFHpA Perfluoroheptanoic Acid
- PFHxA Perfluorohexanoic Acid
- PFHxS Perfluorohexanesulfonic Acid
- PFNA Perfluorononanoic Acid
- PFOA Perfluorooctanoic Acid
- PFOS Perfluorooctanesulfonic Acid
- PFPeA Perfluoropentanoic Acid
- PFPeS perfluoropentanesulfonic Acid